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The analysis of equations of gyroscopic systems almost always necessitates the 

separation of fast nutation motions from those of slow precession. Simplified 
equations for the determ~ation of these two kinds of motion can be obtained by 
various means [l]. The method of fractional analysis [Z] used here for formaliz- 
ing the passing to precession equations is based on the combination of methods 
of the theory of similarity and dimensionality with asymptotic methods of the 
theory of differential equations. The asymptotic behavior of solutions of com- 
plete equations of the gyroscopic system motions is investigated in the case in which 
the ratio of characteristic times T, and Tn of nutation and precession motion 
components tends to zero. 

Definition. Equations whose solutions for the slow components of motion represent 
for times of order Tp the zero order approximation with respect to the small parameter 
p = T, J Tr, , where T, and la are the characteristic times of nutation and preces- 
sion components, respectively, are called precession equations of gyroscopic systems. The 
exact meaning of this definition is made clear subsequently, 

Let us briefly consider the problem of passing to precession equations. Some of such 
problems were considered earlier in [3, 41, 

The general equations of gyroscopic systems are of the form [l]: 
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q’ = A-=p, p’ = f pT (A-l)’ -$ A-~P + Q + (B + H) A-IP (1) 

Q (0) = QO, P (0) = P” 

where the dot denotes differentiation with respect to time ; q = (qi) is the vector of 
generalized coordinates that define the angular position of elements of the gyroscopic 

system ; A = (AJR) is the matrix of moments of inertia; B = (Bjd is the matrix 
of dissipation coefficients ; H = (Hjk) is the matrix of gyroscopic coefficients ; Q = 
(Qj) is the vector of generalized forces acting on the system ; q” and p” are initial 
values of the generalized coordinates and momenta, respectively, and T is the symbol 

of transposition. Further constructions are derived on certain assumptions about the beha- 

vior of functions Alk, Bjk, Hjk and Qi in Eq.(l). For the sake of brevity, some ofthe 
requirements, such as those about the smoothness of functions, uniform boundedness, etc. 
are not explicitly stated. It is assumed that the considered functions satisfy all neces- 
sary conditions. 

Let us normalize the equations of motion (1) of the gyroscopic system [Z, 51 and set 

q = q*y, A-‘p = o*z, A = A,a, B = B,b, H = H,h, (2) 

Q = Q,f 
where the asterisk denotes characteristic values of parameters of the considered class of 

motions. These are chosen so that the elements of dimensionless matrices Y, z, a, 6, 
h and f are of the order of unity. We select the time constant T, , characteristic for 

this kind of gyroscopic system motion, as the unit of time, and introduce the related di- 
mensionless time, 

We further assume that the geometric and mass characteristics of elements of the gyro- 
scopic system are, respectively, quantities of the same order, and set 

A, = max {Ajk}, B, = max {Bjk}, H, = max {Hjk} 

The quantity Q, in (2) represents the maximum value of the generalized forces in 
the considered region of variation of time and generalized coordinates. This-region is 
selected on the basis of the specific construction of the gyroscopic system and its opera- 
tion conditions. 

The angles of turn of structural components of the gyroscopic system are usually taken 
as the generalized coordinates. We assume these angles can be fairly great so that q* = L 

Angular velocities of the gyroscopic system are determined by the magnitude and fre- 
quencies of control signals and perturbations. For example, the characteristic values o* 
ofa uniaxial gyrostabilizer are determined by parameters of the feed-back circuit. 

It is assumed here that the gyroscopic system control is not “rigid” and that the “fast’ 
and “slow” angular velocity components are of comparable order of magnitude. It was 
shown in [5] that the fast component of angular velocity is in the form of oscillations 
whose amplitude is equal to the product of a quantity of the order of a very small frac- 
tion of a radian by the nutation frequency, while the slow component is determined by 
the gyroscope precession induced by the applied moments. We select CO* equal to the 
characteristic angular velocity of precession CO* = & / H *. The substitution of selec- 
ted characteristic parameters (2) into (1) yields the system of equations 
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dyldt = g z, 
P 

y (0) = 5 f y” 

$&zz,= +~z~~z_ti-(“b+h)z 
(3) 

2 (0) = A-lp” / o* E 20 

(Tp=HJQ*, T,=AL/Q*, x=B,/H,) 

Parameters T n and Tp are called the nutation and precession time constants, respec- 

tively. We assume that T, < T, (which is valid for the majority of gyroscopic sys- 
tems) . 

If the considered system is nonautonomous, we must introduce the characteristic per- 

turbation time Tf whose magnitude in the case of harmonic perturbations can be ofthe 
order of the perturbation period. If Tf N T,, the system is considered to be subjected 
to fast (high-frequency) perturbations, while for Tf - T, the latter am considered to 
be slow. Generally it is possible to set in (3) 

x = /_&a, /J = T, I T p, O\<a\<l (4) 

At the limit CL = 0 (x = 1) we have a strongly damped gyroscopic system, an example 
of which is provided by the float-type gyroscope. The limit case of a = 1 (x = p) 
corresponds to a weakly damped gyroscopic system such as, for example, one with low 
friction in gimbal axes. Formulas of the kind of (4) were used in [S] for analyzing peri- 
odic solutions of singularly perturbed equations arising from gyroscopic systems for 0 < 

a < 1, We restrict our analysis to the following case with different parameters x and 

TP 
Case A. The perturbations are slow (T, = Tp) and the gyroscopes of the system 

are strongly damped, i, e. x = 1. 
As the characteristic time in (3) we take T, = T,, then 

dyldt = z (5) 

p & [a (y, t) z] = -+’ -%p 2 + f (y, t) - [xb (y, t) + h (y, t)] 2 

y (0) = y”, 2 (0) = z”, x = 1 

The above are differential equations with a small parameter at derivatives. The conflu- 

ent system of equations for system (5) is of the form [7] 

dvldt = w, v (0) = y” (6) 
f (v, t) - [b (v, t) + h. (v, t)l w = 0 

The sufficient conditions of applicability of Eqs. (6) for defining the motion of a gyro- 
scopic system are provided by the following theorem. 

Theorem 1. bet us assume that the following conditions are satisfied: 
a) The determinant of matrix b (y, t) -I- r (y, t) within the region D = {t, 

y : t fz to, %I, II Y I\ < Yll o variation of variables is nonzero. f 
b) The solution v = v (t) of system (6) exists and is unique for all t E LO, c,l. 
c) For all t and Y from some bounded closed region that contains the Confluent 

solution v = v (t) there exists an asymptotic stability of the equilibrium point 
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UJ (Y, r> = [b (Y, t> -k c (Y, t)l-‘f (Y, t) of the adjoint system of differential equa- 
tions 

g [a (?A t) 21 = f (!I, q -- [b (y, t) + h (y, t)] 2 

in which y and t are parameters and 7 = t / p is the fast time. 
Then v (t) and w (t) represent the zero order asymptotic approximation of the exact 

solution y (t, IL) and z (t, p) of complete Eqs. (5), i. e. 

11 y (t, lr) - v 0) II = 0 (PL) for t = 0 (I) (8) 

Formula (8) explicitly implies the existence of constants cr and cs independent of l.J, 
such that the estimate 

II Y (G CL) - v w II < C2P 

is valid for all values of slow time t in the interval 0 < t < C, . Constant c, can be 
arbitrary, but its selection evidently affects cs and CL,,. 

The proof of Theorem 1 follows directly from Tikhonov’s theorem [7], if one considers 
that in this case the influence region of the stable root of the confluent equation is un- 
bounded owing to the linearity of the adjoint system (7) of equations in z [7]. Only such 
z that do not violate normalization conditions (2) are used for solving specific problems. 
Note that solutions of the complete and confluent systems in fast variables z are close 
to each other outside some initial time interval defined by a quantity of order P In (1 / 
cc) . It is called the exponential boundary layer in time. 

Thus according to the above definition formulas (6) represent precession equations of 
gyroscopic systems. When passing to limit from the complete to confluent equations the 
proposed method of derivation of precession equations yields thesame equations as those 
obtained in [l]. 

Case B, Perturbations are slow (Tt = TP) and the system’s gyroscopes are weakly 
damped , i.e. x = p. (Conservative systems entirely free of damping belong to this 
class). In this case the conditions of Tikhonov’s theorem are not satisfied when passing 
to limit from system (5) to system (6) for f~ --f 0 , 

The passing to precession equations in Case B can be validated by using, for example, 
the device of averaging in the form proposed by Volosov [8]. 

Let us substitute t = PLz into (5). For x = p the equations of motion of the gyro- 
scopic system are of the form 

dY at 
-& = p, dt = P 

$-[u(y, t)z] =+ep z+f(Y*t)-_[CLb(y,t)+h(y,t)lz 

y (0) = y”, 2 (0) = 2” 

For the fast time the form of system (5) corresponds to the selection of the nut&ion time 
constant T, = T, as the unit of time in (3). An asymptotically great interval 0 < 
z < c, / p of variation of the fast time r corresponds to the interval 0 < t < Cl 
of variation of the slow time t . 

Setting in (9) p = 0, we obtain the so-called generating system of differential equa- 
tions 

dldz [a (v, t) WI = f (v, t) - h (vt t) w, w (0) = z” (10) 

where u and t are parameters and, consequently, efk, hjk and tj are constant quanti- 
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ties with respect to r r The generating system defines similarly to adjoint Eqs, (7) the 
fast motions of the considered mechanical system at every instant of time, 

Let us consider the following variants of Case B: 
B1) det 26 # 0 and B2) det h = 0. 

For det h # 0 the solution of system (10) is represented by the sum of the constant 
component h-“f and of the set of harmonic components that are nutational oscillations 
of the system [l]. 

The equation which determines the approximate solution of system (9) in terms of 
slow variables to within the first order of smallness with respect to p, is of the form 

du 
-=p((w), dz (w) = lim -$- {w(l”. u, t, z)& 

T-+02 
0 

(11) 

where <w> denotes the result of averaging the solution of the generating system (10). 
Since the oscillating components of the solution vanish in computation, (11) assumes 

the form 
dvldt = h-1 (v, t) f (v, t), v (0) = y” 

In this case Eqs. (12) are precession equations of the gyroscopic systems. Note that Eqs. 
(12) differ from the simplified equations for such systems derived by equating to zero 
some parts of the expressions for kinetic energy [I]. The precession equations obtained 
here are simpler than the latter,since they do not contain dissipation terms. 

When the number of the system generalized coordinates is odd, we have Case B2 with 
det h (y, t) = 0, and the result of averaging the solution of the generating system (if 
the Limit of (2c> exists) depends on initial conditions for the fast variables z. Hence 
in accordance with the general averaging method {8] the transition to precession equa- 
tions reduces in this cage to the derivation of a ~bs~tut~on which would increase the 
number of coordinates of the vector of slow variables. 

As an example, we present in explicit form the equation for the slow components of 
the solution of system (9) for det h = 0 in the particular case when a (Y, t) is a unit 
matrix. Let us assume that the dimension of vector z is 2r + 1, and that matrix h is 
independent of y and has one zero eigenvalue, while the remaining eigenvalues of the 
skew symmetric matrix 6 are purely imaginary. Let furthermore f (y, t) = 0. (This is 
a meaningful requirement,since for f (y, t) + 0 and det h = 0 a limit for the solution 
of the generating system may not exist), 

On these assumptions system (9) assumes the form 

Y to) = Y”, 2 (0) = z” 

and the generating system 
&J/d% = - h (t) WV u) (0) = ?? (14) 

Using in (13) the vector of arbitrary constants obtained by solving the generating sys- 
tem (14) as the new variables, we can obtain a system of standard form equations that is 
equivalent to (13) [8]. Carrying out the averaging procedure in that system for the aug- 
mented vector of slow variables we obtain the following equations of (2~+ 2) order : 

dv 
- = kc (t) dt 

(k = LT (t) z) (15) 
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dk 4 0) --_ 
at - kf W ( b (v,t) 5 (1) + 7) 
v (0) = Y", k (0) = ST (0) z”, II r, (t) II = ’ 

where f (t) is the normalized eigenvector of matrix h (t) which corresponds to the zero 
eigenvalue, k is the new scalar variable which is an element of the vector of arbitrary 

constants related to the particular solution with zero eigenvalue. Note that k is an inte- 
gral of the generating system (14) and a projection of vector z on the direction deter- 
mined by the eigenvector 5 (t). Equations (15) can be considered as the precession equa- 
tions for the gyroscopic system (13). 

The following theorem follows directly from the theorem about the first approximation 

of the general method of averaging. 
Theorem 2. In the time interval 0 < 7 < cr / p and for fairly small p solu- 

tions of Eqs. (9) and (12) (Case Bl) and of Eqs. (13) and (15) (Case B2) can be as close as 

desired. 
Note that generally such closeness does not exist with respect to fast variables. 

A strongly damped system subjected to fast perturbations can be analyzed similarly to 

Case B by using the general method of averaging. 
Note that the presence in a gyroscopic system of fast perturbations accompanied by 

weak damping may lead to the appearance of resonance effects, which necessitates the 
use of corresponding results of the theory of the averaging method [8]. 

The above investigation shows that the equations, whose solution v (t) within the prob- 
lem precession times, i.e. 11 y (t, p) - v (t) 11 = 0 (p) for t = 0 (1) , lies in the 

j.L-neighborhood of the exact solution of the gyroscopic system (5) for the slow variables 
y (t, p), can be taken as the precession equations of such systems. If in the last formula 

p is directed to zero, the solution of the precession equations v (t) = lim,, y (t, p) 

obtained in this manner for 0 < t < cl, i.e. v (t) , is unique. We would point out, 
however, that v (t) does not uniquely determine precession equations, unlike a power 

series that simultaneously represents asymptotically a particular function and an infinite 
set of functions. Hence the retention in approximate equations, for example, of terms of 
order pa is not a fundamental condition for obtaining the approximate solution of equa- 
tions of a gyroscopic system with the specified above accuracy. It is from this point of 
view that the question of neglecting dissipative terms in precession equations in Case B 
is to be decided. 

The question of validity of precession equations for infinite time intervals requires 
separate consideration, since the conditions of the above two theorems ensure the close- 

ness of the complete and precession equations only in a finite interval of the slow time t. 
It is not difficult to see that it is not generally possible to approximate the solution 

of complete equations for t --+ M by solutions of precession equations without imposing 
further restrictions. Such closeness is present when the solutions of precession equations 
are stable for constantly acting perturbations. 

Such result was obtained in (9) for a linear system in Case A. In the nonlinear case 
it is possible to use the theorems [lo] which ensure the closeness of the complete and 
confluent equations in an infinite time interval when the solutions of confluent equations 
are stable in the first approximation ( *) (See Foot-note at the next page). 

The results of [8, 111 can be used for proving the validity of passing to precession 
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equations when using the general scheme of the averaging method for an infinite time 
interval. From the theorem formulated in [ll] follows Theorem 3. 

Theorem 3. Let the precession equations (12) have the trivial solution 2, = 0 , 
and let there exist a positive definite scalar function V (t, v) whose derivative in vir- 
tue of the precession equation (12) is the negative definite iirnction 

whe= WI (4, ws (v) ad Ws ( > v are positive definite functions. Then for fairly mi- 
nor initial conditions for the slow variables # and fairly small ~1 the solutions of com- 
plete and precession equations am close to each other in an infinite time interval. 

Thus the theory of singularly perturbed equations makes it possible to reduce the prob- 
lem of passing in a gyroscopic system to precession equations to the problem of separa- 
ting fast and slow motions. Depending on the system behavior when the small parameter 
tends to zero the results of T~onov [7] and Vasil’eva [12], or the general method of 
averaging [8] can be used, 

The described methods do not,evidently, represent all methods of investigation of sin- 
gularly perturbed systems, which can be applied for passing to precession equations of the 
theory of gyroscopes [13- 151. In particular, the scheme devised in 1163 which does not 
require an explicit solution of the generating system can be used. The considerable pos- 
sibilities of the regulatization method of passing to a space of considerable dimensions, 
proposed by Lomov 117, 181, should be mentioned. 
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A certain analog of the Liapunov second method is constructed for dynamic sys- 

tems with cylindrical phase space. The known results obtained by it for second 
order dynamic systems are extended to systems with cylindrical phase space of 
arbitrary dimensions. The derived theorems are used for analyzing the operation 
of a system of two synchronous machines and for investigating the automatic phase 
frequency as a “whole”. 

The working modes of systems of automatic phase frequency control (APFC) are usu- 
ally such that the phase difference 6 (1) between the reference generator that is being 
synchronized is a bounded function of time t E (0, + m). It is often possible to establish 
on the basis of bcundedness of d (t) that for t - + 03 there exists a finite limit of a (r) 
for autononmous APFC systems [l, 21. The presence of such limit means that the con- 
sidered working mode of the APFC is one of capture [l]. Similar statements are also va- 
lid for working modes of synchronous motors,except that then the phase difference bet- 
ween the rotating magnetic field and the rotor is represented by function o (t) [3- 61. 

A certain analog of the Liapunov second method is derived below, which makes it pos- 
sible to obtain effective sufficient conditions of boundedness or unboundedness for function 


